Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Plants (Basel) ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38498409

RESUMEN

Drought-induced metabolic dysregulation significantly enhances the production of reactive oxygen species (ROS), which, in turn, exerts a substantial influence on the oxidation-reduction regulatory status of cells. These ROS, under conditions of drought stress, become highly reactive entities capable of targeting various plant organelles, metabolites, and molecules. Consequently, disruption affects a wide array of metabolic pathways and eventually leads to the demise of the cells. Given this understanding, this study aimed to investigate the effects of different drought stress levels on the growth and development of the invasive weed Wedelia trilobata and its co-responding native counterpart Wedelia chinensis. Both plants evolved their defense mechanisms to increase their antioxidants and hormone contents to detoxify ROS to avoid oxidative damage. Still, the chlorophyll content fluctuated and increased in a polyethylene-glycol-simulated drought. The proline content also rose in the plants, but W. chinensis showed a significant negative correlation between proline and malondialdehyde in different plant parts. Thus, W. trilobata and W. chinensis exhibited diverse or unlike endogenous hormone regulation patterns under drought conditions. Meanwhile, W. trilobata and W. chinensis pointedly increased the content of indole acetic acid and gibberellic acid in a different drought stress environment. A positive correlation was found between endogenous hormones in other plant parts, including in the roots and leaves. Both simulated and natural drought conditions exerted a significant influence on both plant species, with W. trilobata displaying superior adaptation characterized by enhanced growth, bolstered antioxidant defense mechanisms, and heightened hormonal activities.

3.
Biol Rev Camb Philos Soc ; 99(3): 753-777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174626

RESUMEN

Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.


Asunto(s)
Especies Introducidas , Malezas , Malezas/fisiología , Ecosistema , Control de Malezas/métodos , Conservación de los Recursos Naturales
4.
Front Plant Sci ; 14: 1238704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745988

RESUMEN

Aegilops tauschii (Coss.) is a highly deleterious, rapidly proliferating weed within the wheat, and its DD genome composition exhibits adaptability toward diverse abiotic stresses and demonstrates heightened efficacy in nutrient utilization. Current study investigated different variegated impacts of distinct nitrogen concentrations with varied plant densities, scrutinizing the behavior of Ae. tauschii under various salinity and drought stress levels through multiple physiological, biochemical, and molecular pathways. Different physiological parameters attaining high growth with different plant density and different nitrogen availability levels increased Ae. tauschii dominancy. Conversely, under the duress of salinity and drought, Ae. tauschii showcased an enhanced performance through a comprehensive array of physiological and biochemical parameters, including catalase, peroxidase, malondialdehyde, and proline content. Notably, salinity-associated traits such as sodium, potassium, and the sodium-potassium ratio exhibited significant variations and demonstrated remarkable tolerance capabilities. In the domain of molecular pathways, the HKT and DREB genes have displayed a remarkable upregulation, showcasing a comparatively elevated expression profile in reaction to different levels of salinity and drought-induced stress. Without a doubt, this information will make a substantial contribution to the understanding of the fundamental behavioral tendencies and the efficiency of nutrient utilization in Ae. tauschii. Moreover, it will offer innovative viewpoints for integrated management, thereby enabling the enhancement of strategies for adept control and alleviation.

5.
Funct Integr Genomics ; 23(3): 277, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37603091

RESUMEN

The precise biological function and activity of the deoxylulose-5-phosphate reductoisomerase (DXR) gene and its promoter in Osmanthus fragrans var. semperflorens remain unclear, even though OfDXR is known as the crucial enzyme involved in plant terpenoid synthesis. This study aimed to shed light on the role and activity of the OfDXR gene and its promoter in O. fragrans var. semperflorens by employing RACE-PCR and Hi-TAIL-PCR techniques for the cloning of the gene and promoter sequence from the petal tissue. Subsequently, genetic transformation and histochemical staining methods were utilized to analyze their function and activity. The OfDXR gene exhibited a DNA sequence length of 5241 bp, encompassing 12 exons and 11 introns. The corresponding cDNA sequence of the OfDXR gene was 1629 bp, encoding 474 amino acid residues. Expression analysis revealed that the OfDXR gene was predominantly active in the petals during the early full blooming stage. Overexpression of the OfDXR gene in Arabidopsis plants at the primary or full blooming stage led to an augmentation in the total terpenoid content. Furthermore, the promoter sequence of the OfDXR gene spanned a length of 1174 bp and contained conserved regulatory/response elements, demonstrating functional activity. These findings indicate that the OfDXR gene plays a pivotal role in terpenoid synthesis, while its promoter exhibits robust activity.


Asunto(s)
Arabidopsis , Fosfatos , Intrones , Arabidopsis/genética , Regiones Promotoras Genéticas , Terpenos , Clonación Molecular
6.
Sci Total Environ ; 872: 162210, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36791863

RESUMEN

Biochar (BC) is a sustainable and renewable carbonaceous material, and its soluble component, dissolved black carbon (DBC), is the key to understanding BC's geological and environmental processes. Although the relationship between the changes in DBC structure and its properties, functions, and associated environmental risks has been explored, a gap remains in our understanding of DBC's fate and behavior in the natural environment. Thus, in this review, we have highlighted the molecular and chemical compositions and the structural evolution of DBC during pyrolysis, the influence of DBC's physicochemical properties on its fate and transport, DBC's interaction with soil and its contaminants, and DBC stability in soil and water environments along with potential risks. Based on our in-depth assessment of DBC and its biogeochemical roles, we believe that future studies should focus on the following: (1) using advanced techniques to understand the chemical and molecular structure of DBC deeply and concisely and, thus, determine its fundamental role in the natural environment; (2) investigating the multi-functional properties of DBC and its interaction mechanisms; and (3) evaluating the environmental behaviors of and risks associated with DBC after BC application. In future, it is necessary to gain a deeper insight into the fate and transport of DBC with contaminants and study its associated risks under BC application in the environment.

7.
Funct Integr Genomics ; 23(1): 44, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36680630

RESUMEN

Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.


Asunto(s)
Genómica , Malezas , Malezas/genética , Fenotipo , Adaptación Fisiológica
8.
Environ Sci Pollut Res Int ; 28(2): 1574-1586, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32851523

RESUMEN

Co-transport of biochar (BC) colloids with coexisting organic contaminants (OCs) in soil involves complex interactions among BC colloids, OCs, and soil particles, which is significant for the environmental application and risk assessment of BC and yet has not been well addressed. This study explored co-transports of three typical OCs (i.e., phenanthrene (PHN), atrazine (ATZ), and oxytetracycline (OTC)) and BC colloids obtained from bulk BCs with different charring temperatures (200-700 °C) and particle sizes (250 nm, 500 nm, and 1 µm) in a soil column of 9 cm in height. Considerable transport of BC colloids alone was observed and the maximum breakthrough concentration (C/Co) increased from 0.08 to 0.77 as the charring temperature decreased from 700 to 200 °C. The mobilities of PHN, OTC, and ATZ alone were very low but were greatly increased by co-transports with BC colloids, and their maximum C/Co values were within 0.05-0.33, 0.03-0.44, and 0.05-0.62, respectively, in the absence and presence of various BC colloids. The enhancement effect of BC colloids on the OC transport decreased with increasing charring temperature or particle size of BC colloids. BC colloids mainly acted as a vehicle to facilitate the transport of OCs, and dissolved organic carbon from BC colloids also contributed to the increased mobility of OCs in dissolved form. These findings provide new insights into co-transport of BC colloids and contaminants in soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Adsorción , Carbón Orgánico , Coloides
9.
Environ Sci Pollut Res Int ; 27(15): 18412-18422, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32189203

RESUMEN

Biochar (BC) colloids attract increasing interest due to their unique environmental behavior and potential risks. However, the interaction between BC colloids and organic contaminants that may affect their fates in the environment has not been substantially studied. Herein, adsorption and desorption of phenanthrene (PHN), atrazine (ATZ), and oxytetracycline (OTC) by a series of BC colloids derived from bulk rice straw BC samples with 6 pyrolysis temperatures (200-700 °C), and 3 particle sizes (250 nm, 500 nm, and 1 µm) were investigated. Regardless of pyrolysis temperature, BC colloids from a given sized bulk BC had a comparable size, being 30 ± 6, 70 ± 18, and 140 ± 15 nm corresponding to the three sized bulk BCs, respectively. The adsorption kinetics curves were well explained by the pseudo-second-order model, and pore diffusion was the primary rate-determining step. Both Freundlich and Langmuir models well fitted the adsorption isotherms. With increasing pyrolysis temperature or decreasing particle size of bulk BC, the specific surface area and pore volumes of the derived BC colloids increased, the kinetics model fitted adsorption rates (k2) of the three organics by the BC colloids all largely decreased, and the Langmuir model fitted adsorption capacities (Qmax) increased. The highest Qmax was obtained by BC colloids from the smallest (250 nm) bulk BC with the highest pyrolysis temperature (700 °C), being 212 µmol g-1 for PHN, 815 µmol g-1 for ATZ, and 72.4 µmol g-1 for OTC. The adsorption was reversible for PHN and ATZ, while significant desorption hysteresis was observed for OTC on BC colloids with middle pyrolysis temperatures (300-500 °C). The underlying mechanisms including hydrophobic interaction, π-π electron donor-acceptor interaction, molecular size effect, and irreversible reactions were discussed to explain the difference in the adsorption and desorption behaviors. The findings increased our understanding of the environmental fate and risk of BC.


Asunto(s)
Carbón Orgánico , Pirólisis , Adsorción , Coloides , Cinética , Tamaño de la Partícula , Temperatura
10.
Environ Pollut ; 260: 114037, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32006888

RESUMEN

Pathways for the physical disintegration of biochar (BC) and the release of water dispersible BC colloids (WDBC) have received much attention due to their unique impacts on carbon loss and contaminant. However, the current understanding of the mechanisms involved in WDBC formation and associated influencing factors is rather limited. This study systematically explored the effects of pyrolysis temperature, initial particle size, and solution chemistry on WDBC formation in aqueous solutions and examined the formation and colloidal stability of WDBC in natural solutions. Results showed that pyrolysis temperature determined the abrasion resistance of pyrolyzed BC, and the submicron fragment rate decreased in the order 400 °C (BC400) > 700 °C (BC700) > 200 °C (BC200). The WDBC yield decreased in the order BC400 (77.5-331 mg g-1) > BC700 (33.5-173 mg g-1) > BC200 (16.8-125 mg g-1) depending on BC size at a solution ionic strength (IS) ≤ 1 mM, which was positively correlated with the submicron fragment rate of bulk BC. With the exception of BC200, increasing IS (0.1-20 mM) and decreasing pH (3.0-10.0) significantly inhibited WDBC yield. Release and sedimentation dominated the WDBC formation processes with the former being more susceptible to solution chemistry. Derjaguin-Landau-Verwey-Overbeek interactions properly explained the effect of IS on WDBC from BC400 and BC700, while the steric resistance of abundant dissolved organic carbon on BC200 was mainly responsible for the high formation of WDBC at high IS (20-50 mM). WDBC had high colloidal stability and could form and stabilize well in natural surface waters and soil solutions, suggesting the relevant risk of long-distance migration of WDBC in environments. These findings represent new knowledge regarding the physical decomposition and the fate of BC in the environment.


Asunto(s)
Carbón Orgánico , Coloides , Pirólisis , Contaminantes del Agua , Tamaño de la Partícula , Temperatura
11.
Environ Pollut ; 255(Pt 2): 113253, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31627172

RESUMEN

Metals are released from biochar (BC) in either the free or dissolved organic carbon (DOC)-combined form. The complexation of metals with DOC influences their toxicity and bioavailability in the environment. The endogenous release of metal species with heterogeneous DOC from BC is very complex; this process has been neglected and remains unaddressed in the literature to date. In this study, the yield and chemical properties of labile DOC from BC were characterized, and the release of endogenous metal/metalloid elements (K, Mg, Mn, Fe, Al, Cu, and Si) and their species from BC with various pyrolysis temperatures and particle sizes were systematically investigated under various solution chemistries. The results showed that pyrolysis temperature of BC significantly influenced the yield and composition of DOC and DOC-metal/metalloid complexes, while particle size had lower impact. The yield of BC-derived DOC significantly decreased and the components gradually changed from low-molecular weight and low-aromaticity hydrophilic humic acid-like substances to complex high-molecular weight and high-aromaticity hydrophobic substances as pyrolysis temperature increased from 200 to 700 °C. The release of total dissolved metals decreased with increasing pyrolysis temperature, while the highest total dissolved Si was released from BC with the moderate pyrolysis temperature (500 °C). The metal elements were mainly released in the DOC-combined form, while the released Si was mainly in the free form in the neutral water environment. The release of DOC increased while that of dissolved metals decreased with increasing solution pH. The release of total dissolved metals/metalloids increased but the ratio of the DOC-combined metals/metalloids decreased with increasing solution ionic strength. These results provide new insight into the understanding of endogenous metal/metalloid release from BC in the natural environment.


Asunto(s)
Carbón Orgánico/química , Metales/química , Carbono/química , Sustancias Húmicas/análisis , Tamaño de la Partícula , Pirólisis , Soluciones , Temperatura
12.
Biomed Res Int ; 2019: 8134651, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428647

RESUMEN

Cadmium (Cd+2) is a highly toxic metal, which significantly alters different biochemical and metabolic processes in plants. Massive amounts of Cd+2 is being released into the environment by different anthropogenic activities. In the present study, plant growth promoting activities of bacterial strain Bacillus cereus was evaluated under Cd+2 stress in two rice cultivars Basmati-385 and Shaheen Basmati. Cd+2 stress significantly decreased plant growth and biomass production in both cultivars. However, with the inoculation of B. cereus under Cd+2 treatments, reduced Cd+2 uptake and increased antioxidant enzymes activities in rice cultivars lead to enhanced plant growth, biomass production, photosynthetic pigments, micronutrients, and lowered electrolytes leakage. This study suggests that B. cereus has the ability to alleviating Cd toxicity and increased phytoremediation efficiency of rice seedling under Cd stress.


Asunto(s)
Bacillus cereus/metabolismo , Cadmio/toxicidad , Oryza , Plantones , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Oryza/crecimiento & desarrollo , Oryza/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...